

Via Antonio Zanussi, 300/302 33100 Udine - Italy Cap. Soc. EURO 100.000 i.v. P.lva / C.F. 00477620306 Reg. Imp. UD 00477620306 R.E.A. UD-138461

ph. +39.0432.522970 fax +39.0432.522253 info@mmgrigliati.it

SCH 38/17DC_VIN

06.05.2011 - Rev. 4

MOLDED GRATINGS

Mesh	mm	38 x	38
Thickness	mm	23	
Cover thickness	mm	3	upper cover
Oover unchiess	mm	3	bottom cover
Bearing bar	mm	7	upper part
thickness	mm	5	bottom part
Color	Natu	ral tra	nslucent

	Vinylester Resin
Raw materials	Roving glass fiber + Mat and Woven Fabric type"ECR"
	Without inorganic fillers

Resin type	Modulus of elasticity	Ultimate stress
VIN	12250 MPa	130 MPa

Stand	dard panels	
mm	1220 x 3660	Sin
		The start of the s
Weigl	ht kg/m² 19	
	± mm 5 panel	
tolerance	dimensions ± mm 2 height	

	Surface	Α	Quartz	Antiskid level R13 V4 norm DIN 51130
--	---------	---	--------	--------------------------------------

Ageing resistance	Ageing test made with UV lamp according to ASTM G154-06 and passed with 5 points on the gray range and without evident defects (test made with 1500 hours of exposure to 4 hours alternate cycles at a UV temperature of 60°C and 4 hours at a condensed temperature of 50°C irradiated by UVB 313 nm lamp, radiance 0,71 W/m²)
	After the exposure to heat, cold and humidity cycles according to UNI EN ISO 9142/04 norm (n° 21 cycles type D3) there is no evidence of defects

Via Antonio Zanussi, 300/302 33100 Udine - Italy Cap. Soc. EURO 100.000 i.v. P.Iva / C.F. 00477620306 Reg. Imp. UD 00477620306 R.E.A. UD-138461 ph. +39.0432.522970 fax +39.0432.522253 info@mmgrigliati.it

LOADS

MAXIMUM SUGGESTED LOADS

Type of support	On the line of the two ends of the panel

Limits determined by **Deflection** (load sagging)

the maximum deflection admitted, is 1/200 of the distance between the supports

According to the standard DIN 24537-3 deviation due to the load may be no more than 1/200 of the land width and the difference in height between neighbouring joints between loaded and unloaded floor coverings may be no more than 4 mm.

DISTRIBUTED LOAD			CONCENTRATED LOAD			
Distance between	Load with	Load with	Distance between	Load with	Load with	
supports	deflection equal to 1/200	deflection equal to 1/100	supports	deflection equal to 1/200	deflection equal to 1/100	
[cm]	[kg	/m²]	[cm]	[kg/m]		
30	11950	23900	30	2200	4450	
50	2550	5150	50	800	1600	
70	900	1850	70	400	800	
90	400	850	90	200	450	

	Limits determined by	Admitted stresses (stress determined by the load)
--	----------------------	---

the **maximum admitted stress** is 1/5 of the ultimate stress (safety factor is equal to 0.20 – the ultimate stress is 5 times the specified load)

DISTRIBUTED LOAD		CONCENTRATED LOAD	
Distance between supports	Maximum admitted load	Distance between supports	Maximum admitted load
[cm]	[kg/m²]	[cm]	[kg/m]
30	13750	30	2050
50	4950	50	1200
70	2500	70	850
90	1500	90	650

- The above characteristics are meant as reference values for standard material in ambient working temperature. Even if they are not to be considered as guaranteed characteristics they are based on our experience and are supplied in good faith.
- According to the standard DIN 24537-3 the conversion safety factor should be 0.75 for internal environmental exposure conditions, 0.65 for external exposure conditions, and 0.50 for aggressive exposure conditions.
- No matter which are the exposure conditions, chemical resistance must be always verified by contacting M.M. technical department.
- In case of heavy duty load compressive strength must be verified.